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One-dimensional dynamics for traveling fronts in coupled map lattices
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(Received 1 April 1999

Multistable coupled map lattices typically support traveling fronts, separating two adjacent stable phases.
We show how the existence of an invariant function describing the front profile allows a reduction of the
infinitely dimensional dynamics to a one-dimensional circle homeomorphism, whose rotation number gives the
propagation velocity. The mode locking of the velocity with respect to the system parameters then typically
follows. We study the behavior of fronts near the boundary of parametric stability, and we explain how the
mode locking tends to disappear as we approach the continuum limit of an infinite density of sites.

PACS numbes): 05.45.Ra

I INTRODUCTION Xer1(1) = (=) f(xy(1)) + e f (x (1 1)) @

Coupled map lattices(CML's) are arrays of low-
dimensional dynamical systems with discrete time, originally
introduced in 1984 as simple models for spatiotemporal
complexity[1]. CML’s have been extensively used in mod- N1 : & - :
eling spatiotemporal chaos in fluid phenomena such as tur-X”l(I) (1=2)f0u(i))+ Z[f(xt(' D+ 1)),
bulence[2], convection[3], and open flow$4]. Equally im- (2
portant is the analysis of pattern dynamics, which has found
applications in chemistr{5] and patch population dynamics which are callecbne-wayanddiffusiveCML'’s, respectively.
[6]. One important feature of pattern dynamics is the exisThe diffusive CML corresponds to the discrete analoge of
tence of traveling fronts, which occur at the pattern boundthe reaction-diffusion equation with a symmetrical neighbor-
aries, and are also seen to emerge from apparently decorrgg interaction. There is now a single coupling parameter
lated medid 7]. This paper extends the work on the behaviorwhich is constrained by the inequality<®:<1, to ensure
of a traveling interface on a lattice developed8+-11]. Our  that the sign of the coupling coefficients in E¢®) and (1)
main results aréi) a constructive procedure for the reduction (j.e., ¢, £/2, and 1- &) remains positive.
of the infinitely dimensional dynamics of a front to one di-  |n this paper we study front propagation Histable
mension((ii) a characterization of the behavior of fronts nearCML'’s. The local mapping is continuous and has two stable
the boundary of parametric stabilityiii) a characterization equilibria, and aront is any monotonic arrangement of the
of the behavior of fronts near the continuum limit. state variables, linking the two equilibria asymptotically.

We consider a one-dimensional infinite array of sites. At We will show how to construct a one-dimensional circle
theith site there is a real dynamical variabig), and alocal map describing the motion of the front. Such a mapping
dynamical system—théocal map The latter is given by a originates from the existence of an invariant function de-
real functionf which we assume to be the same at all sitesscribing the asymptotic front profile, and of a one-
The dynamics of the CML is a combination of local dynam- dimensional manifold supporting the transient motions. The
ics and coupling, which consists of a weighted sum ovefotation number of the circle map will then give the velocity
some neighborhood. The time evolution of fiie variable is  of propagation, resulting in the occurrencensbde locking
given by i.e., the parametric stability of the configurations that corre-

spond torational velocity. We will describe the vanishing of
this phenomenon in the continuum limit, as the width of the
Xer1(D) =2 exf (x(i +K)), front becomes infinite. We shall also be concerned with the
: evolution of the front shape near the boundary of parametric
stability, where the continuity of the local map ensures a
where the range of summation defines the neighborhood. Themooth evolution of the front shape.
coupling parametersy are site independent, and they satisfy  Velocity mode locking is commonplace in nonlinear
the conservation lavEe, =1, to prevent unboundedness ascoupled systems(e.g., Frenkel-Kontorova model§12],
time increases to infinity. The two most common choices forJosephson-junction arrayd3], excitable chemically reac-
the coupling are tions [14], and nonlinear oscillatorgl5]); the present work
provides further support for its genericity, and highlights key
dynamical aspects.

*Present address: Department of Mathematics and Statistics, Si- Throughout this paper, the very existence of fronts in the
mon Fraser University, Burnaby, BC, Canada V5A 1S6. Electroniaregimes of interest to us is inferred from extensive numerical
address: ricardo_carretero@sfu.ca, URL: http://www.math.sfu.cagvidence. We are not concerned with existence proofs here.
~rcarrete/ric.html Fronts have been proved to exist in various situations,
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mainly for discontinuougpiecewise affine mapsee[11] and

references therejnin the present context, however, continu- local dynamics

ity is crucig. g m———————- X,
Following [9], we consider a CML whose local mdps I, i
continuous and monotonically increasing and which pos- —  (TTTTTTTTT /7T T T T T X
sesses exactly two stable fixed poixts and x* . It then )i
follows that there exists a unique unstable fixed poifit h .
such thatx* <x* <x* . The homogeneous fixed state§) "~ ¥~y ——7°~"~"~"~"~"""7 X
=x* , Vi e Z, inherit the stability of the fixed points® [16]. coupling dynamics
We denote byl _=[x* ,x*) andl , =(x*,x% ] the basins of
attraction ofx™ andx’; , respectively, whild =[X’i ,Xfr]_ FIG. 1. The dynamics of a front for a one-way CML results

A minimal mass statés a state satisfying the monotonic- from the. compgtitiqn between local dynamics and co.upli.ng. The
ity condition x(i)<x(i+1), for all i. It can be shown di- schematic contrlbutlons from the chal dynam(esrows with filled
rectly from the system equation that the image of a minimaffowheasl and coupling(arrows with empty arrowheadare de-
mass state has the same propertyfraht is a minimal mass Picted for all front sites at time(filled circles. A sufficiently large
state satisfying the asymptotic condition Jim .x(i) =X . coupling causes a S|.te located Wlthln the basir(filled C|rcle at the

. . . = = center of front to switch to the basih_ , and move rapidly toward
The ,mam zpmpe_’rt'es of a frolnt are _@nter of masg, and x* . As a consequence, the center of mass of the front will move to
its width o, which measure its position and spread at ttme ¢ right, resulting in propagation.
respectively. They are defined as the mean and variance of
the variablei with respect to the time-dependent probability and move rapidly toward™ . As a consequence, the center
distribution of mass of the front will move to the right, resulting in
propagation.
_ |Ax(i)] A similar argument can be applied in the diffusive case.
p(i)=—", 3 Now however the coupling is symmetric, and a bias to either
2 1A%,(1)] of the ;table points will have' to be intr'oduced' via an asym-
i= o metry in the local map. For instance, increasing the size of
the basin of attraction of* will result in propagation from
where Ax,(i)=x(i +1)—x(i) is the variation of the local left to right for an increasing front.
states. We have In previous works we have shown that the dynamics of a
finite-sizeinterface in a class of piecewise linear one-way
CML’s can be reduced to a single one-dimensional map
Mt:,Z ip(i), [9,10]. The finiteness of the front depended on the existence
” of degenerate superstable fixed points of the local map,
" 4) which caused nearby orbits to collapse onto the stable states
2= S (i- 12p,(1) in a single iterati.on. In this paper we remove _sug:h degen-
Ui H) Pl eracy, and consider smooth local maps and infinitely ex-
tended fronts(the case of a discontinuous local map was
A state X,={x(i)} with finite center of mass and width is treated in[11]). We shall provide evidence that every front
said to belocalized evolves toward a unique asymptotic regime, characterized by

In this paper we are interested in fronts fofed shape @ constant velocity as well as an invariant shape. Under these

moving at Ve|ocity\/_ They are described by the equation assumptions, we then show how the front behaves at the
boundary of the regions of parametric stabilibere the con-
. _ T tinuity of the local map is essentjaland how the reduction
x()=h(i—vt), v=Ilim==, tieZ (5)  to one-dimensional dynamics can be achieved.
t=e This paper is organized as follows. In Sec. Il we describe
) _ ) the behavior of traveling fronts in the continuum limit, when
Here the functionh:R—[x* ,x}]=1 is to be determined the density of interfacial sites is large. We obtain an ordinary
subject to the condition that it be monotonic, with lim...  differential equatior(ODE) describing the shape of the trav-
==x1 . The degree of smoothness fofwill depend on the  eling front, and with it we find new classes of fronts. In Sec.
regime being considered. Il we consider the asymptotic shape of the front, and we

The object of interest to us is the central part of the frontprovide extensive evidence that such a shape is fixed and is
Far away from the center, the lattice is almost homogeneougescribed by a continuous function. This result allows us to
[i.e., [Ax(i)|<[I[], and the dynamics is dominated by the derive a procedure for the reduction of the infinite-
attraction toward the stable points of the local map. Thedimensional interface dynamics to a one-dimensional prob-
qualitative evolution of the center of the front can be under{em described by thauxiliary map In Sec. IV we show that
stood as the result of the competition between local dynamthe auxiliary map is a circle map and we relate its rotation
ics and couplindsee Fig. 1, for the one-way cas€or small  number to the velocity of the front, from which the mode
&, the attraction toward the fixed poink. overcomes the locking of the velocity with respect to the system parameters
effect of the coupling, resulting in propagation failumero  follows. Finally, we explain in terms of reduced dynamics
velocity) [9]. A sufficiently large coupling will instead cause the vanishing effect of mode locking when the continuum
a site located within the basin_ to switch to the basinh_, limit is approached.

0
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II. THE CONTINUUM LIMIT W (b) : \/
In this section we consider fronts with large widths, for \N :

which the relative density of sites is large, and the continuum f
approximation becomes appropriate. To achieve a front with 4
such features, the attraction towartl and the repulsion of &’ [y-—Xx" R
x* must be small. Becaudeis continuous and monotonic, :

thenf is necessarily close to the identity, i.e.,
Si= sup [f(x)—x/<1. M/\

* *
X <X<XT. h h

Choosing functiond such thats;—0 is referred to as the  FIG. 2. Qualitative features of the phase sphtg) vs h(t) of
continuum limit the ODE’s(8), corresponding to the traveling front solution in the

Inserting Eq.(5) into the equations of motiofl) and (2) continuum limit.(a) A one-way CML corresponds to Hamiltonian
we find that motions.(b) A diffusive CML corresponds to dissipative motions.

Note that in(b) a heteroclinic connection between unstable points
(@) h(z—v)=(1-¢)f(h(z))+ef(h(z—1)), (6)  can still exist in the presence of friction.

(b) h(z—v)=(1—¢)f(h(2) a single equation. The ODE'®) describe the motion of a
particle of massm=(v2—¢)/2, subject to the potential
€ V(x)=[[f(x)—x]dx, with maxima located at the stable
+ = 1))+ + '
2[f(h(z D+ ih(z+ 1], fixed points of the local magFig. 2).

In the one-way case, the system is conservative. For nu-
for the one-way and diffusive CML's, respectively, where merical experiments, we choose a symmetric local rhap
z=i—vt. A function h satisfying the functional equatid)  ith fixed pointx* = =1 andx* =0. The resulting potential
represents the fixed shape of a front traveling at the velocitys 150 symmetric. There exist two heteroclinic connections,
v , _ L joining x* to x* andx’ to x* , respectivelyfthe thick lines

To solve Eq.(6) in the continuum limit, we assunfeand i, Fig 2a)]. They correspond, respectively, to an increasing
h to be twice differentiable, and consider the Taylor series ot,,4 3 decreasing symmetric traveling front for the CML.

hin z up to second order. The Taylor expansion becomes |, yhe diffusive case, the differential equation has the dis-
accurate as the width increases, since in this case the Va_”§|‘pative term—vh’(z). For the local map, we choose 0

tion of h over adjacent lattice sites tends to zero. We obtain_, _ p<1, which introduces an asymmetry in the system,

ef"(h(2)) and the maxima of the potential are now unequ&lx*)
T)h’(z)2 >V(x*). Imposing a heteroclinic connection frorf and
x% constrains the velocity of the front (see below. For
vZ—ef’(h(2)) larger velocities, the separatrix emanating frotfi ap-
+ f) h"(z)=0, () proaches, while for smallerv it escapes to infinity. Since
the presence of friction breaks the time-reversal symmetry,
whereA=[¢f’(h(z))—v] andA= —v, for the one-way and ©nly one heteroclinic connection is possible, and the separa-
diffusive CML’s, respectively. In the continuum limit we can trix emanating fromx”. always approachgs|[the thick lines
further simplify Eq.(7) by consideringf’(x)=1 andf”(x)  in Fig. 2(b)].
=0, to obtain The continuum approximation can be used to construct
new kinds of traveling fronts. For example, the librating or-
g(e—1) bits in Fig. 4a) (one-way casg correspond to spatially pe-
(@ h(z)—f(h(z))+( 2 )h”(z)zo, riodic traseling fronts thgt never toucr?the stablpe po[gespe
®) Fig. 3(@) (iii)]. Such spatially periodic orbits do not exist in
the diffusive case. Nevertheless, it is possible to construct the
)h"(Z) =0, traveling front departing fronx* that dissipates down tp.
This new solution has a damped oscillatory profdee Fig.

h(z)—f(h(z))+Ah’(z)—(

vi—¢g

(b) h(z)—f(h(z))—vh'(2)+ 5

for the one-way and diffusive CML'’s, respectively, where 3(b) ()] ) ) ) . .
Wwe setv=¢ in the one-way case since in the continuum limit In the remainder of this section, we briefly examine the

f(x)—x and thus the rate of information exchane., the ~ caS€ of a cubic local map, providing the dominant behavior

velocity) is equal tos. For the diffusive case the velocity is ©f & general bistable local map in the continuum limit. We
not equal toe, since the total information exchange comesUSe the one-parameter families of cubics
from the competition between the left and right neighbors.
Nevertheless, as we shall see, it is possible to give an ana- X
lytical approximation to the velocity for the case of an asym- (@ fx)=35[3=v=(1- )X,
metric cubic local map.
Equations(8) are similar to those obtained [d7], where
the traveling front in a lattice of coupled ODE'’s is reduced to (b) f(x)=(1—v)(px>—x3—p)+(2— )X,

€)
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FIG. 3. Traveling front solutions in the continuum limit ap- 04 | / -
proach.(a) Heteroclinic[(i) and (ii)], and oscillatory(iii) solutions :
in a one-way CML.(b) Damped heteroclinic solution§) connects 0.6 I y
the stable fixed poink* to the unstable fixed point* =p; (i) os :
connects the two stable points. o T r’ i
_1 1 1 1 1 1 1 1 1 1
for the one-way and diffusive CML'’s, respectively. Again, 0 05 115 2 25 3 35 4 45 S
. . (Rt 4
x* ==1 for both cases, while* =0 in the one-way case
andx* = p in the diffusive case, where<Qp<1 controls the FIG. 4. The traveling front shape is reconstructed by superim-

asymmetry. The continuum limit is attained by letting the posing snapshots of the discrete interface in a comoving reference
parametery approach 1 from below. Substituting the cubic frame. (8 One-way coupling:f(x) =tanh/0.2), £=0.398 011,
local maps(9) in the differential equation$8), one finds  V(g)=0.285603 &2/7. (b) Diffusive coupling:f is the second it-
expressions for the heteroclinic connections corresponding terate of the logistic map, witls=0.2 andv(&)=0.009 7915 (c)

the traveling front solutions: Diffusive coupling: f as in (b), with £=0.6 and v(e)
=0.111 827 3.
1-v
(a)h(z)=tan 25(1—2)2)" one-dimensional mapping describing the front evolution—

(10 the auxiliary map.
(1—v)p If the velocityv of the front isirrational, then the collec-
(b) h(z)=tan|‘(Tz> , tion of pointsi —vt, with i andt integers, form a set dense on
the real line. Numerical experiments consistently suggest
where that in the case of a front, the closure of the set of points
(i—vt,x(i))e R? forms the graph of a continuous and
272 g(1—¢) monotonic functionh:Z—[x* ,x% ], which is a solution to
—T3 11—, the functional equatiof).
(11) The results for both CML models are summarized in Fig.
72 e 4, where we have superposed all translates of the discrete
(b) v=pve(l—v), 02=? 1 fronts, after eliminating transient behavior. This procedure
Y requires computingsg numerically, which was done using
for the one-way and diffusive CML'’s, respectively. In the SOMe 16-10" iterations of the CML[In principle, a numeri-

diffusive case, the expression for the velocity is derived fronc@l solution to Eq(6) can be found using various iterative
imposing a heteroclinic connection, while the scaling of thefunctional schemes. However, all the schemes considered

width o2 is found from the solutiongl0). Note that for both ~ Were plagued by slow convergence and are not discussed
models the functional dependence of the width on the paranf€e _ _ . o

eterv is the same, and it describes the rate at which the front [N the case in whiclv=p/q is rational, the functionh is
broadens as the continuum limit is approached. MoreoveSPecified only at a set afequally spaced points. It turns out,

from Egs.(10) and(11) we have that in the diffusive case however, that the definition di becomes unequivocal in a
is independent op. prominent parametric regime, corresponding to the boundary

While in the continuum limit the front is described by a ©f the so-called mode-locking region mmgue The latter is
continuous functiorh [cf. Eq. (10)], there is noa priori ~ defined as the collection of parametees«) corresponding
reason why such a function should continue to exist awaj® @ given rational velocity, where (not necessarily one
from the limit, due to the discrete nature of the system. welimensional parametrizes the family of local maps—for the
shall nonetheless give evidence that the dynamics of a frorfn€-way CML we typically usé(x) =tanh/v).

far from the continuous limit remains one dimensional. We defer the discussion of the origin of such regions to
the next section. Here we consider a sequence of parameters

(en,vn)— (g, ,v,), converging from the outside toward a
boundary point £, ,v,) of the tongugsee Fig. 5 Indepen-

In this section we provide evidence that every front has alently from the path chosen to approach the boundary point,
fixed profile, which can be characterized by an invariantthe fronth appears to approach a unique limiting shape. The
function h. Such a function will then be used to construct alimiting shape is a step function witly steps(where v

(a) v=¢, o

Ill. REDUCED DYNAMICS OF THE TRAVELING FRONT
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0.5

h(z)

(e,%=0.1)

FIG. 5. Approximating traveling front for a rational velocity.
The parametric point located at the edge of a tongneall boy, is
approached both transversallgath A) and tangentially(pathsB
andC). The tongue corresponds to a traveling front with velocity
v(e)=1/3, which is periodic with period 3. In all cases the front
shape approaches the same step function, with 3 steps per uni
length inz. Note that the fronts have been shifted for clarity. Here
the local map if(x) =tanh{/v), and the parameters at the bound-
ary of the mode-locking region are (=0.3983yp, =0.1).

=p/q) for every unit length—the horizontal length of each
step is 14 since there areg equidistant points in every hori-
zontal interval of unit length for &= p/q orbit. In the limit,
the front dynamics becomes periodic, with periodic points
corresponding to the midpoint of each step. This observation
suggests that choosing step fronts with the periodic points at
their midpoints ensures continuity of the front shapes at the
resonance tongue boundaries.

In the next section, we shall explain this phenomenon in
terms of the dynamics of a one-dimensional map—the aux-
iliary map ®—which we now define. The idea is to describe
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the evolution of any site in the front by means of a single

site, thecentral site x(0), defined as the site that is closest to
the unstable point*. The position of the central site moves
along the lattice with an average velocitye), since it fol-
lows the center of the interface. Followifg,10], we define
the map® as

FIG. 6. Auxiliary maps® for the central site of the interface
defined in the square region depicted by the thick lifasOne-
way CML: local map f(x)=tanh&/0.2) with £=0.4, v
=0.28973453(b) Diffusive: same parameters as in Figcy¥ The
delay Poincareectiond(x) corresponds to the central rectangular
region of each plofregion 1 in (a). Each rectangular region cor-
responds to the return map for a particular combination of sites. For

ZH(O):CD(Z(O))- 12 instance, region 2 iffa) corresponds ta, ;(1) vsX,(1).

If the velocity is irrational, the domain of definition of the

! i : : : one must make use of E@l2) on suitable transients. We
map is a set of points dense in an inter(gde next section

Of | > ! _ have verified numerically that when a front is perturbed, the
and the possibility exists of extendirg continuously to the  perturbation relaxes quickly onto a one-dimensional mani-
interval. In Fig. a) and (b), we plot the graph ofb for a  fo|d, along which the original front is approached. The pro-
one-way and a diffusive CML, respectively. The auxiliary cess of randomly disturbing the front amounts to a random
map corresponds to the square region depicted with thiclalk path reconstruction of the one-dimensional manifold.
lines, while the other regions represent delay Poinca@®s  sych one-dimensional transients were found to be indepen-
of some neighboring sites. Indeed, for each neighlmdithe  dent of the detail of the perturbation, giving an unequivocal
central site, there is a corresponding auxiliary circle igp  definition of the auxiliary map in the rational case also. This
such thatx; , 1(j) = ®;(xi(j)), with =, (see below. is illustrated in Fig. 7. Crucially, this construction yields a
If the velocity is rational, Eq(12) defines® only at a map that changes continuously within the tongue, matching
finite set of points, and to extend the domain of definition,the the behavior at the boundary of the tongue. Thus we
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*

X+a
f(X=a) =~~~ A f&-a)
}
}
1
1
]
:
1‘\ 1
— 1
(=] !
}
1
:‘.‘:{' * R4 *
-0.2 X—a c X+a

FIG. 8. The auxiliary mapb, accounting for the dynamics of
& the site closest to the unstable pokit, is a circle map orf x*
04 P —a,x* +a], with two increasing branches. andf_ .

front velocity will then follow from the mode locking of the
rotation number ofb. Furthermore, the conjectured continu-

. . N o ous dependence @ on e implies a continuous dependence
FIG. 7. Typical reconstruction of the auxiliary map inside a  of the rotation number oe, and in particular® takes all
mode-locking tongue. The large stars locate the original periodigotation numbers between any two realized values. For in-
orbit well inside a tonguéin this examplev =1/5). A small random  stance, the front velocity in a one-way CML takes the values
perturbation is periodically applied to the central site of the front.q 3nd 1 fore=0 and 1 respectively, and thus as the cou-

The state of each perturbed front is depicted by circles. After feWpIing parameter varies, all velocitiase[0,1] are realized.
transient iterationg2 or 3), the perturbed front relaxes onto the For a diffusive CML o,nly an interva[Ov, ] is attained
one-dimensional manifold represented by the thick line. This tech-_. . . N - ma
. . . i o : .since the maximum velocity ,,,,=Vv(g=1) does not reach
nique is applied repeatedly until the whole one-dimensional maniz - cause of the competition between the attractors
fold is filled in. . - . . ) .
Let us consider a continuous and increasing traveling

conjecture that the auxiliary mab depends continuously on ToNnt h(i—vt+ig) with positive irrational velocity 8<v

the coupling parametes. In the next section we shall ex- <1. The largest possible separation betwagi0) andx*

p|0|’e some consequences of the Continuity_ Corresponds to the pOSItlon of for which two consecutive
We finally relate the dynamics of the entire front to that of Points on the lattice are equally spaced from the unstable

the central site, governed b (). LetZ(j) denote theth point x*. Suppose that the front shapes positioned such

o N
neighboring site of the central siig(0), wherej is positive that for sitei, we haven(i) =x*. We choosax such that
(negative for the right (left) neighbors. The dynamics of h(i—a)=x*—a and h(i+1—a)=x*+a (14

X:(j) can be deduced from that E{(O) and the knowledge ) )
of h, as follows: where Osasmin(x} —x*|,|x* —x*[). By adding the two

equations in(14) one obtains an equation fer, anda can
Z(j): hoTjoh*l(Z(o)) (13 then be evaluated. If the front is at a position where it satis-
fies the equationgl4) for somei, then theith and {+ 1)th
wherer; is the translation by on R. Sinced;(x) mapsx,(j)  Sites are equally spaced frort, and the dynamics of the

t0 %:1(j), the pair(x(j),x.+1(j)) belongs to the graph of Site closest tox* is contained in the intervalx* —a,x*
®;. By applying the operatohovl-oh* to the function T @&l- Any shift of the front will cause either one of the two

- . . .
®(x,(0)) we obtain sites to be closer tg* than orlg.mally._ _
We now follow the dynamics of,(0) in [x* —a,x*

-0.4

hoTjoh—1q>(;t(o)):hoTjoh—l(;Hl(o)) +a]. Suppose that at time theith site is the closest t&*
_ _ sox.(0)=x,(i). We want to know which site will be closest
=Xp+1(]) =P (xe())), to x* at time 7+ 1. Since we are considering the case

N d Eq(13) which relat ahbori " >0 there are two possibilities(a) the ith site again

where we used Eq which relates neighboring sites. - _ : LT
omoh—1 aravi : [X7+1(0)=X,44(1)] or (b) the (+1)th site [x..(0)

Thusher;eh™* provides a conjugacy betwednand®; and =x..1(i +1)]. Redefiningh,(i)=h(i — vt +i,), we find two

enables us to reconstruct the whole interfacial dynamic%aseS
from the behavior of the central site. '
L — h;*(x,(0)) @
IV. MODE LOCKING OF THE PROPAGATION hf1(2(0)=1 | — (15)
VELOCITY h.*(x,(0))+1 (b

In this section we show that the auxiliary mdp is a  But, by definition,h ., 1(X) =h_(x—V), so from Eq.(15) one
circle homeomorphisnisee Fig. 8 The mode locking of the obtains
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o] @ . | ' ' ' —
X7+ = > o

r+1(0) f.(x,(0)) (b, 04 K 1

where
02
f_(x)=h(h;*(x)~v),
(17 —
f.(x)=h.(h;*(x)—v+1). Z oo |

The functionsf _ andf . inherit some of the properties bf
In particular,f _ andf , are continuous and increasing. In the -02 .
interval [x* —a,x* +a] we have thatf_(x)<f (x), be-

causeh is increasing, so we just evaluate at the following

points: _04 i
f_(x*+a)=h(h;}(x*+a)—v) 7 . -
-04 -02 0 02 04
=h(i+1-a—v), ¢
FIG. 9. Onset of intermittent regime in the auxiliary map, cor-
f,(x*—a)= hT(h;l(x* —a)—v+1) responding to the development of a steplike traveling front. For the
) parameter values and the front shape please refer to . #he
=h(i—a-v+1), intermittency is the precursor of a pair of period-7 orbits.
where we have made use of Eq44). Thus we have the 1t
periodicity condition p(e)=v(e)= |imT > s, (20)
t—oo =1
f_(x*+a)=f,(x*—a). (18

wheres; is theith term in the symbolic sequence. We have
stressed the dependence gb, since for a fixed local map,
& depends or, and so does its rotation number. Because all

sites;(j) belong to the same front, the site interchanges all

Next we find whenf_ and f, reach the extrema of the
interval [ x* —a,x* +a]. To this end we determine. such
thatf.(c.)=x**a. So we solve

f (c)=h(h"Yc )—v)=x*—a occur at the same time, and therefore the rotation number of
e any ®; is the same as the one fdr.
[ fi(cy)=h(h; (c.)—v+1)=x*+a The representation of the motion of a front as a circle map
implies the likelihood of mode locking for rational velocities,
h;l(c,)fv=h;1(x* —a)=i—a corresponding to Arnold tongues in parameter space, and it
:[ h™Y(c,)—v+1=h 1 +a)=i+1-a, affords a simple explanation of the various dynamical phe-

nomena described in the previous sections.

The appearance of gperiod tongue as is varied thor-
ough some critical value, corresponds to a fold bifurcation
of ®9. Generically, a pair of period-orbits is created at
=g, . Thus the orbits ofb will undergo intermittency in the
region of the periody orbit for ¢, close toe, . The inter-
mittency will manifest itself in the graph 6P as shown by
_ (19) the darkly shaded areas of the orbit web in Fig. 9.

f_(x) if x*+a=x>c. Moreover, the periodic orbit will form toward the center
of the dark bands and the corresponding front shape will

From the above properties 6f andf, , it follows that the  “flatten” at the heights taken by the periodic points because

auxiliary map® is a homeomorphism of the circleee Fig. of the time spent in their neighborhood by the orbitstofor

8). en~e, . It then follows that the approximating fronts will

A natural binary symbolic dynamics fab is introduced form steps for the periodic front with the periodic points
by assigning the symbols 0 and 1 whenever the brdncbr  close to their center points, and independently from the para-
f ., respectively, is used in EQ15). These symbols corre- metric path chosen to approach the boundary p@ieé Fig.
spond to the central sitg(i) remaining unchanged, or being 5).
replaced by the new site(i +1), respectively. In Fig. 10 we plot the main mode-locking regions in pa-

Every time a 1 isencountered, the front advances byrameter spac€Arnold tonguey corresponding tov=p/q
roughly one site. So the density of 1's in the sequence givewith small g. Here the local map is given by (x)
an approximation to the velocity, which becomes exact in the=tanh/v), while the parameters vary within the unit square:
limit t—co. In terms of the circle map, the proportion of 1's (e,v) [0,1]?. We believe that mode locking is a common
in the sequence corresponds to its rotation nungber phenomenon in front propagation in CML'’s, because the

whenceh_*(c_)=h_%(c.), and sinceh is monotonic, we
have thatc_=c_ =c.

Therefore, the ma@ giving the dynamics of the central
site (12) is given by

fo(x) if x*—asx=<c

cID(X)Z[
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FIG. 10. Principal Arnold’s tongues of the traveling front veloc- ~0.15

ity in the one-way CML with the hyperbolic tangent local map
f(x)=tanh&/v) in the (e,») [0,1]> parameter space. The right
hand side scale gives the widit of the corresponding traveling
front for fixed e =1/2. FIG. 11. Auxiliary mapsb;(x) for the reduced dynamics of the
traveling front near the continuum limit. The CML was taken to be

nonlinearity of the local map induces nonlinearity in the aux-one way with local mag(x) =tanh§/v), v=100/101, and coupling
iliary map [9,10], and mode locking is generic for such strengthe =0.45.
maps. However, this phenomenon often takes place on very . ) .
small parametric scales, since the width of the tongues de!oW smaller, since the intervak=[x~ ,x% ] has to be shared
creases sharply with increasing (Fig. 10. This explains Petween a larger number of sites. As a consequence, the
why this phenomenon has not been widely repofteith the nonlm_earlt_y of eachd is reo_luced(note_z that the_auxnlary
notable exception of the large=0 region, corresponding to Maps in Fig. 11 are almost lingaand with it the size of the
the well-known propagation failure in the anticontinuum tongues. Thus, the larger the widift of the traveling front,
limit [18]). the thl'nne.r the mode-locking tongugee the right hand side

In the continuum limit(see Fig. 1B the stability of the ~Scale in Fig. 10
attractorsx’ becomes weaker, causing the front to broaden.
In Fig. 11 we plotted the auxiliary maps; corresponding to
v=100/10%1 for the one-way CML with local map(x) R.C.G. acknowledges DGAPA-UNAMMexico) for fi-
=tanh/v). This figure should be compared with Fig. 6, cor- nancial support during the preparation of this paper. This
responding to a narrower front. The domain of eadehis  work was partially supported by EPSRC GR/K17026.
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