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One-dimensional dynamics for traveling fronts in coupled map lattices

R. Carretero-Gonza´lez,* D. K. Arrowsmith, and F. Vivaldi
School of Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London E1 4NS, United Kingdom

~Received 1 April 1999!

Multistable coupled map lattices typically support traveling fronts, separating two adjacent stable phases.
We show how the existence of an invariant function describing the front profile allows a reduction of the
infinitely dimensional dynamics to a one-dimensional circle homeomorphism, whose rotation number gives the
propagation velocity. The mode locking of the velocity with respect to the system parameters then typically
follows. We study the behavior of fronts near the boundary of parametric stability, and we explain how the
mode locking tends to disappear as we approach the continuum limit of an infinite density of sites.

PACS number~s!: 05.45.Ra
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I. INTRODUCTION

Coupled map lattices~CML’s! are arrays of low-
dimensional dynamical systems with discrete time, origina
introduced in 1984 as simple models for spatiotempo
complexity @1#. CML’s have been extensively used in mo
eling spatiotemporal chaos in fluid phenomena such as
bulence@2#, convection@3#, and open flows@4#. Equally im-
portant is the analysis of pattern dynamics, which has fo
applications in chemistry@5# and patch population dynamic
@6#. One important feature of pattern dynamics is the ex
tence of traveling fronts, which occur at the pattern bou
aries, and are also seen to emerge from apparently dec
lated media@7#. This paper extends the work on the behav
of a traveling interface on a lattice developed in@8–11#. Our
main results are~i! a constructive procedure for the reductio
of the infinitely dimensional dynamics of a front to one d
mension;~ii ! a characterization of the behavior of fronts ne
the boundary of parametric stability;~iii ! a characterization
of the behavior of fronts near the continuum limit.

We consider a one-dimensional infinite array of sites.
the i th site there is a real dynamical variablex( i ), and a local
dynamical system—thelocal map. The latter is given by a
real functionf which we assume to be the same at all sit
The dynamics of the CML is a combination of local dynam
ics and coupling, which consists of a weighted sum o
some neighborhood. The time evolution of thei th variable is
given by

xt11~ i !5(
k

«kf „xt~ i 1k!…,

where the range of summation defines the neighborhood.
coupling parameters«k are site independent, and they satis
the conservation law(«k51, to prevent unboundedness
time increases to infinity. The two most common choices
the coupling are
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xt11~ i !5~12«! f „xt~ i !…1« f „xt~ i 21!… ~1!

and

xt11~ i !5~12«! f „xt~ i !…1
«

2
@ f „xt~ i 21!…1 f „xt~ i 11!…#,

~2!

which are calledone-wayanddiffusiveCML’s, respectively.
The diffusive CML corresponds to the discrete analoge
the reaction-diffusion equation with a symmetrical neighb
ing interaction. There is now a single coupling paramete«
which is constrained by the inequality 0<«<1, to ensure
that the sign of the coupling coefficients in Eqs.~2! and ~1!
~i.e., «, «/2, and 12«) remains positive.

In this paper we study front propagation inbistable
CML’s. The local mappingf is continuous and has two stab
equilibria, and afront is any monotonic arrangement of th
state variables, linking the two equilibria asymptotically.

We will show how to construct a one-dimensional circ
map describing the motion of the front. Such a mapp
originates from the existence of an invariant function d
scribing the asymptotic front profile, and of a on
dimensional manifold supporting the transient motions. T
rotation number of the circle map will then give the veloci
of propagation, resulting in the occurrence ofmode locking,
i.e., the parametric stability of the configurations that cor
spond torational velocity. We will describe the vanishing o
this phenomenon in the continuum limit, as the width of t
front becomes infinite. We shall also be concerned with
evolution of the front shape near the boundary of parame
stability, where the continuity of the local map ensures
smooth evolution of the front shape.

Velocity mode locking is commonplace in nonline
coupled systems~e.g., Frenkel-Kontorova models@12#,
Josephson-junction arrays@13#, excitable chemically reac
tions @14#, and nonlinear oscillators@15#!; the present work
provides further support for its genericity, and highlights k
dynamical aspects.

Throughout this paper, the very existence of fronts in
regimes of interest to us is inferred from extensive numer
evidence. We are not concerned with existence proofs h
Fronts have been proved to exist in various situatio
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1330 PRE 61CARRETERO-GONZA´ LEZ, ARROWSMITH, AND VIVALDI
mainly for discontinuouspiecewise affine maps~see@11# and
references therein!; in the present context, however, contin
ity is crucial.

Following @9#, we consider a CML whose local mapf is
continuous and monotonically increasing and which p
sesses exactly two stable fixed pointsx2* and x1* . It then
follows that there exists a unique unstable fixed pointx*
such thatx2* ,x* ,x1* . The homogeneous fixed statesx( i )
5x6* , ; i PZ, inherit the stability of the fixed pointsx6* @16#.
We denote byI 25@x2* ,x* ) and I 15(x* ,x1* # the basins of
attraction ofx2* andx1* , respectively, whileI 5@x2* ,x1* #.

A minimal mass stateis a state satisfying the monotonic
ity condition x( i )<x( i 11), for all i. It can be shown di-
rectly from the system equation that the image of a minim
mass state has the same property. Afront is a minimal mass
state satisfying the asymptotic condition limi→6`x( i )5x6* .
The main properties of a front are itscenter of massm t and
its width s t

2 , which measure its position and spread at timt,
respectively. They are defined as the mean and varianc
the variablei with respect to the time-dependent probabil
distribution

pt~ i !5
uDxt~ i !u

(
i 52`

`

uDxt~ i !u

, ~3!

whereDxt( i )5xt( i 11)2xt( i ) is the variation of the loca
states. We have

m t5 (
i 52`

`

ipt~ i !,

~4!

s t
25 (

i 52`

`

~ i 2m t!
2pt~ i !.

A stateXt5$xt( i )% with finite center of mass and width i
said to belocalized.

In this paper we are interested in fronts offixed shape,
moving at velocityv. They are described by the equation

xt~ i !5h~ i 2vt !, v5 lim
t→`

m t

t
, t,i PZ. ~5!

Here the functionh:R°@x2* ,x1* #5I is to be determined
subject to the condition that it be monotonic, with limx→6`

56x6* . The degree of smoothness ofh will depend on the
regime being considered.

The object of interest to us is the central part of the fro
Far away from the center, the lattice is almost homogene
@i.e., uDxt( i )u!uI u#, and the dynamics is dominated by th
attraction toward the stable points of the local map. T
qualitative evolution of the center of the front can be und
stood as the result of the competition between local dyn
ics and coupling~see Fig. 1, for the one-way case!. For small
«, the attraction toward the fixed pointsx6* overcomes the
effect of the coupling, resulting in propagation failure~zero
velocity! @9#. A sufficiently large coupling will instead caus
a site located within the basinI 1 to switch to the basinI 2 ,
-

l

of

t.
us

e
-
-

and move rapidly towardx2* . As a consequence, the cent
of mass of the front will move to the right, resulting i
propagation.

A similar argument can be applied in the diffusive cas
Now however the coupling is symmetric, and a bias to eit
of the stable points will have to be introduced via an asy
metry in the local map. For instance, increasing the size
the basin of attraction ofx2* will result in propagation from
left to right for an increasing front.

In previous works we have shown that the dynamics o
finite-sizeinterface in a class of piecewise linear one-w
CML’s can be reduced to a single one-dimensional m
@9,10#. The finiteness of the front depended on the existe
of degenerate superstable fixed points of the local m
which caused nearby orbits to collapse onto the stable st
in a single iteration. In this paper we remove such deg
eracy, and consider smooth local maps and infinitely
tended fronts~the case of a discontinuous local map w
treated in@11#!. We shall provide evidence that every fro
evolves toward a unique asymptotic regime, characterized
a constant velocity as well as an invariant shape. Under th
assumptions, we then show how the front behaves at
boundary of the regions of parametric stability~here the con-
tinuity of the local map is essential!, and how the reduction
to one-dimensional dynamics can be achieved.

This paper is organized as follows. In Sec. II we descr
the behavior of traveling fronts in the continuum limit, whe
the density of interfacial sites is large. We obtain an ordin
differential equation~ODE! describing the shape of the trav
eling front, and with it we find new classes of fronts. In Se
III we consider the asymptotic shape of the front, and
provide extensive evidence that such a shape is fixed an
described by a continuous function. This result allows us
derive a procedure for the reduction of the infinit
dimensional interface dynamics to a one-dimensional pr
lem described by theauxiliary map. In Sec. IV we show that
the auxiliary map is a circle map and we relate its rotat
number to the velocity of the front, from which the mod
locking of the velocity with respect to the system paramet
follows. Finally, we explain in terms of reduced dynami
the vanishing effect of mode locking when the continuu
limit is approached.

FIG. 1. The dynamics of a front for a one-way CML resu
from the competition between local dynamics and coupling. T
schematic contributions from the local dynamics~arrows with filled
arrowhead! and coupling~arrows with empty arrowhead! are de-
picted for all front sites at timet ~filled circles!. A sufficiently large
coupling causes a site located within the basinI 1 ~filled circle at the
center of front! to switch to the basinI 2 , and move rapidly toward
x2* . As a consequence, the center of mass of the front will mov
the right, resulting in propagation.
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II. THE CONTINUUM LIMIT

In this section we consider fronts with large widths, f
which the relative density of sites is large, and the continu
approximation becomes appropriate. To achieve a front w
such features, the attraction towardx6* and the repulsion of
x* must be small. Becausef is continuous and monotonic
then f is necessarily close to the identity, i.e.,

d f5 sup
x2
* ,x,x1

*
u f ~x!2xu!1.

Choosing functionsf such thatd f→0 is referred to as the
continuum limit.

Inserting Eq.~5! into the equations of motion~1! and ~2!
we find that

~a! h~z2v !5~12«! f „h~z!…1« f „h~z21!…, ~6!

~b! h~z2v !5~12«! f „h~z!…

1
«

2
@ f „h~z21!…1 f „h~z11!…#,

for the one-way and diffusive CML’s, respectively, whe
z5 i 2vt. A function h satisfying the functional equation~6!
represents the fixed shape of a front traveling at the velo
v.

To solve Eq.~6! in the continuum limit, we assumef and
h to be twice differentiable, and consider the Taylor series
h in z, up to second order. The Taylor expansion becom
accurate as the width increases, since in this case the v
tion of h over adjacent lattice sites tends to zero. We obt

h~z!2 f „h~z!…1Ah8~z!2S « f 9„h~z!…

2 Dh8~z!2

1S v22« f 8„h~z!…

2 Dh9~z!50, ~7!

whereA5@« f 8„h(z)…2v# andA52v, for the one-way and
diffusive CML’s, respectively. In the continuum limit we ca
further simplify Eq.~7! by consideringf 8(x)51 and f 9(x)
50, to obtain

~a! h~z!2 f „h~z!…1S «~«21!

2 Dh9~z!50,

~8!

~b! h~z!2 f „h~z!…2vh8~z!1S v22«

2 Dh9~z!50,

for the one-way and diffusive CML’s, respectively, whe
we setv5« in the one-way case since in the continuum lim
f (x)→x and thus the rate of information exchange~i.e., the
velocity! is equal to«. For the diffusive case the velocity i
not equal to«, since the total information exchange com
from the competition between the left and right neighbo
Nevertheless, as we shall see, it is possible to give an
lytical approximation to the velocity for the case of an asy
metric cubic local map.

Equations~8! are similar to those obtained in@17#, where
the traveling front in a lattice of coupled ODE’s is reduced
th

ty

f
s
ia-
n

.
a-
-

a single equation. The ODE’s~8! describe the motion of a
particle of massm5(v22«)/2, subject to the potentia
V(x)5*@ f (x)2x#dx, with maxima located at the stabl
fixed points of the local map~Fig. 2!.

In the one-way case, the system is conservative. For
merical experiments, we choose a symmetric local maf
with fixed pointx6* 561 andx* 50. The resulting potentia
is also symmetric. There exist two heteroclinic connectio
joining x2* to x1* andx1* to x2* , respectively@the thick lines
in Fig. 2~a!#. They correspond, respectively, to an increas
and a decreasing symmetric traveling front for the CML.

In the diffusive case, the differential equation has the d
sipative term2vh8(z). For the local map, we choose
,x* 5p,1, which introduces an asymmetry in the syste
and the maxima of the potential are now unequal:V(x2* )
.V(x1* ). Imposing a heteroclinic connection fromx2* and
x1* constrains the velocityv of the front ~see below!. For
larger velocities, the separatrix emanating fromx2* ap-
proachesp, while for smallerv it escapes to infinity. Since
the presence of friction breaks the time-reversal symme
only one heteroclinic connection is possible, and the sep
trix emanating fromx1* always approachesp @the thick lines
in Fig. 2~b!#.

The continuum approximation can be used to constr
new kinds of traveling fronts. For example, the librating o
bits in Fig. 2~a! ~one-way case!, correspond to spatially pe
riodic traveling fronts that never touch the stable points@see
Fig. 3~a! ~iii !#. Such spatially periodic orbits do not exist i
the diffusive case. Nevertheless, it is possible to construct
traveling front departing fromx1* that dissipates down top.
This new solution has a damped oscillatory profile@see Fig.
3~b! ~i!#.

In the remainder of this section, we briefly examine t
case of a cubic local map, providing the dominant behav
of a general bistable local map in the continuum limit. W
use the one-parameter families of cubics

~a! f ~x!5
x

2
@32n2~12n!x2#,

~9!

~b! f ~x!5~12n!~px22x32p!1~22n!x,

FIG. 2. Qualitative features of the phase spaceh8(t) vs h(t) of
the ODE’s~8!, corresponding to the traveling front solution in th
continuum limit. ~a! A one-way CML corresponds to Hamiltonia
motions.~b! A diffusive CML corresponds to dissipative motion
Note that in~b! a heteroclinic connection between unstable poi
can still exist in the presence of friction.
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1332 PRE 61CARRETERO-GONZA´ LEZ, ARROWSMITH, AND VIVALDI
for the one-way and diffusive CML’s, respectively. Agai
x6* 561 for both cases, whilex* 50 in the one-way case
andx* 5p in the diffusive case, where 0,p,1 controls the
asymmetry. The continuum limit is attained by letting t
parametern approach 1 from below. Substituting the cub
local maps~9! in the differential equations~8!, one finds
expressions for the heteroclinic connections correspondin
the traveling front solutions:

~a!h~z!5tanhSA 12n

2«~12«!
zD ,

~10!

~b! h~z!5tanhS ~12n!p

v
zD ,

where

~a! v5«, s25
2p2

3

«~12«!

12n
,

~11!

~b! v5pA«~12n!, s25
p2

3

«

12n
,

for the one-way and diffusive CML’s, respectively. In th
diffusive case, the expression for the velocity is derived fr
imposing a heteroclinic connection, while the scaling of t
width s2 is found from the solutions~10!. Note that for both
models the functional dependence of the width on the par
etern is the same, and it describes the rate at which the fr
broadens as the continuum limit is approached. Moreo
from Eqs.~10! and~11! we have that in the diffusive caseh
is independent ofp.

While in the continuum limit the front is described by
continuous functionh @cf. Eq. ~10!#, there is noa priori
reason why such a function should continue to exist aw
from the limit, due to the discrete nature of the system.
shall nonetheless give evidence that the dynamics of a f
far from the continuous limit remains one dimensional.

III. REDUCED DYNAMICS OF THE TRAVELING FRONT

In this section we provide evidence that every front ha
fixed profile, which can be characterized by an invaria
function h. Such a function will then be used to construc

FIG. 3. Traveling front solutions in the continuum limit ap
proach.~a! Heteroclinic@~i! and ~ii !#, and oscillatory~iii ! solutions
in a one-way CML.~b! Damped heteroclinic solutions:~i! connects
the stable fixed pointx1* to the unstable fixed pointx* 5p; ~ii !
connects the two stable points.
to
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one-dimensional mapping describing the front evolution
the auxiliary map.

If the velocityv of the front isirrational, then the collec-
tion of pointsi 2vt, with i andt integers, form a set dense o
the real line. Numerical experiments consistently sugg
that in the case of a front, the closure of the set of poi
„i 2vt,xt( i )…PR2 forms the graph of a continuous an
monotonic function:h:Z°@x2* ,x1* #, which is a solution to
the functional equation~6!.

The results for both CML models are summarized in F
4, where we have superposed all translates of the disc
fronts, after eliminating transient behavior. This procedu
requires computingv numerically, which was done usin
some 107–108 iterations of the CML.@In principle, a numeri-
cal solution to Eq.~6! can be found using various iterativ
functional schemes. However, all the schemes conside
were plagued by slow convergence and are not discus
here.#

In the case in whichv5p/q is rational, the functionh is
specified only at a set ofq equally spaced points. It turns ou
however, that the definition ofh becomes unequivocal in
prominent parametric regime, corresponding to the bound
of the so-called mode-locking region ortongue. The latter is
defined as the collection of parameters («,n) corresponding
to a given rational velocity, wheren ~not necessarily one
dimensional! parametrizes the family of local maps—for th
one-way CML we typically usef (x)5tanh(x/n).

We defer the discussion of the origin of such regions
the next section. Here we consider a sequence of param
(«n ,nn)→(«* ,n* ), converging from the outside toward
boundary point («* ,n* ) of the tongue~see Fig. 5!. Indepen-
dently from the path chosen to approach the boundary po
the fronth appears to approach a unique limiting shape. T
limiting shape is a step function withq steps ~where v

FIG. 4. The traveling front shape is reconstructed by super
posing snapshots of the discrete interface in a comoving refere
frame. ~a! One-way coupling:f (x)5tanh(x/0.2), «50.398 011,
v(«).0.285 603 1.2/7. ~b! Diffusive coupling:f is the second it-
erate of the logistic map, with«50.2 andv(«).0.009 791 5.~c!
Diffusive coupling: f as in ~b!, with «50.6 and v(«)
.0.111 827 3.
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PRE 61 1333ONE-DIMENSIONAL DYNAMICS FOR TRAVELING . . .
5p/q) for every unit length—the horizontal length of eac
step is 1/q since there areq equidistant points in every hori
zontal interval of unit length for av5p/q orbit. In the limit,
the front dynamics becomes periodic, with periodic poi
corresponding to the midpoint of each step. This observa
suggests that choosing step fronts with the periodic point
their midpoints ensures continuity of the front shapes at
resonance tongue boundaries.

In the next section, we shall explain this phenomenon
terms of the dynamics of a one-dimensional map—the a
iliary mapF—which we now define. The idea is to describ
the evolution of any site in the front by means of a sing
site, thecentral site x̄t(0), defined as the site that is closest
the unstable pointx* . The position of the central site move
along the lattice with an average velocityv(«), since it fol-
lows the center of the interface. Following@9,10#, we define
the mapF as

x̄t11~0!5F„x̄t~0!…. ~12!

If the velocity is irrational, the domain of definition of th
map is a set of points dense in an interval~see next section!,
and the possibility exists of extendingF continuously to the
interval. In Fig. 6~a! and ~b!, we plot the graph ofF for a
one-way and a diffusive CML, respectively. The auxilia
map corresponds to the square region depicted with th
lines, while the other regions represent delay Poincare´ maps
of some neighboring sites. Indeed, for each neighborj of the
central site, there is a corresponding auxiliary circle mapF j ,
such thatx̄t11( j )5F j„x̄t( j )…, with F5F0 ~see below!.

If the velocity is rational, Eq.~12! definesF only at a
finite set of points, and to extend the domain of definitio

FIG. 5. Approximating traveling front for a rational velocity
The parametric point located at the edge of a tongue~small box!, is
approached both transversally~path A) and tangentially~pathsB
and C). The tongue corresponds to a traveling front with veloc
v(«)51/3, which is periodic with period 3. In all cases the fro
shape approaches the same step function, with 3 steps per
length inz. Note that the fronts have been shifted for clarity. He
the local map isf (x)5tanh(x/n), and the parameters at the boun
ary of the mode-locking region are («* 50.3983,n* 50.1).
s
n
at
e

n
x-

k

,

one must make use of Eq.~12! on suitable transients. We
have verified numerically that when a front is perturbed,
perturbation relaxes quickly onto a one-dimensional ma
fold, along which the original front is approached. The pr
cess of randomly disturbing the front amounts to a rand
walk path reconstruction of the one-dimensional manifo
Such one-dimensional transients were found to be indep
dent of the detail of the perturbation, giving an unequivo
definition of the auxiliary map in the rational case also. Th
is illustrated in Fig. 7. Crucially, this construction yields
map that changes continuously within the tongue, match
the the behavior at the boundary of the tongue. Thus

nit

FIG. 6. Auxiliary mapsF for the central site of the interface
defined in the square region depicted by the thick lines.~a! One-
way CML: local map f (x)5tanh(x/0.2) with «50.4, v
50.28973453.~b! Diffusive: same parameters as in Fig. 4~c!. The
delay Poincare´ sectionF(x) corresponds to the central rectangul
region of each plot~region 1! in ~a!. Each rectangular region cor
responds to the return map for a particular combination of sites.

instance, region 2 in~a! corresponds tox̄t11(1) vs x̄t(1).
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1334 PRE 61CARRETERO-GONZA´ LEZ, ARROWSMITH, AND VIVALDI
conjecture that the auxiliary mapF depends continuously o
the coupling parameter«. In the next section we shall ex
plore some consequences of the continuity.

We finally relate the dynamics of the entire front to that
the central site, governed byF(x). Let x̄t( j ) denote thej th
neighboring site of the central sitex̄t(0), wherej is positive
~negative! for the right ~left! neighbors. The dynamics o
x̄t( j ) can be deduced from that ofx̄t(0) and the knowledge
of h, as follows:

x̄t~ j !5h+t j +h21
„x̄t~0!… ~13!

wheret j is the translation byj onR. SinceF j (x) mapsx̄t( j )
to x̄t11( j ), the pair„x̄t( j ),x̄t11( j )… belongs to the graph o
F j . By applying the operatorh+t j +h21 to the function
F„x̄t(0)… we obtain

h+t j +h21F„x̄t~0!…5h+t j +h21
„x̄t11~0!…

5 x̄t11~ j !5F j„x̄t~ j !…,

where we used Eq.~13! which relates neighboring sites
Thush+t j +h21 provides a conjugacy betweenF andF j and
enables us to reconstruct the whole interfacial dynam
from the behavior of the central site.

IV. MODE LOCKING OF THE PROPAGATION
VELOCITY

In this section we show that the auxiliary mapF is a
circle homeomorphism~see Fig. 8!. The mode locking of the

FIG. 7. Typical reconstruction of the auxiliary mapF inside a
mode-locking tongue. The large stars locate the original perio
orbit well inside a tongue~in this examplev51/5). A small random
perturbation is periodically applied to the central site of the fro
The state of each perturbed front is depicted by circles. After
transient iterations~2 or 3!, the perturbed front relaxes onto th
one-dimensional manifold represented by the thick line. This te
nique is applied repeatedly until the whole one-dimensional m
fold is filled in.
f

s

front velocity will then follow from the mode locking of the
rotation number ofF. Furthermore, the conjectured contin
ous dependence ofF on « implies a continuous dependenc
of the rotation number on«, and in particular,F takes all
rotation numbers between any two realized values. For
stance, the front velocity in a one-way CML takes the valu
0 and 1 for«50 and 1, respectively, and thus as the co
pling parameter varies, all velocitiesvP@0,1# are realized.
For a diffusive CML only an interval@0,vmax# is attained
since the maximum velocityvmax5v(«51) does not reach
1 because of the competition between the attractors.

Let us consider a continuous and increasing travel
front h( i 2vt1 i 0) with positive irrational velocity 0,v
,1. The largest possible separation betweenx̄t(0) andx*
corresponds to the position ofh for which two consecutive
points on the lattice are equally spaced from the unsta
point x* . Suppose that the front shapeh is positioned such
that for sitei, we haveh( i )5x* . We choosea such that

h~ i 2a!5x* 2a and h~ i 112a!5x* 1a ~14!

where 0<a<min(ux1* 2x* u,ux2* 2x* u). By adding the two
equations in~14! one obtains an equation fora, anda can
then be evaluated. If the front is at a position where it sa
fies the equations~14! for somei, then thei th and (i 11)th
sites are equally spaced fromx* , and the dynamics of the
site closest tox* is contained in the interval@x* 2a,x*
1a#. Any shift of the front will cause either one of the tw
sites to be closer tox* than originally.

We now follow the dynamics ofx̄t(0) in @x* 2a,x*
1a#. Suppose that at timet the i th site is the closest tox*
so x̄t(0)5xt( i ). We want to know which site will be closes
to x* at time t11. Since we are considering the casev
.0 there are two possibilities:~a! the i th site again

@ x̄t11(0)5xt11( i )# or ~b! the (i 11)th site @ x̄t11(0)
5xt11( i 11)#. Redefininght( i )5h( i 2vt1 i 0), we find two
cases,

ht11
21

„x̄t11~0!…5H ht
21

„x̄t~0!… ~a!

ht
21

„x̄t~0!…11 ~b!.
~15!

But, by definition,ht11(x)5ht(x2v), so from Eq.~15! one
obtains

ic

.

-
i-

FIG. 8. The auxiliary mapF, accounting for the dynamics o
the site closest to the unstable pointx* , is a circle map on@x*
2a,x* 1a#, with two increasing branchesf 1 and f 2 .
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x̄t11~0!5H f 2„x̄t~0!… ~a!

f 1„x̄t~0!… ~b!,
~16!

where

f 2~x!5ht„ht
21~x!2v…,

~17!
f 1~x!5ht„ht

21~x!2v11….

The functionsf 2 and f 1 inherit some of the properties ofh.
In particular,f 2 and f 1 are continuous and increasing. In th
interval @x* 2a,x* 1a# we have thatf 2(x), f 1(x), be-
causeh is increasing, so we just evaluate at the followi
points:

f 2~x* 1a!5ht„ht
21~x* 1a!2v…

5ht~ i 112a2v !,

f 1~x* 2a!5ht„ht
21~x* 2a!2v11…

5ht~ i 2a2v11!,

where we have made use of Eqs.~14!. Thus we have the
periodicity condition

f 2~x* 1a!5 f 1~x* 2a!. ~18!

Next we find whenf 2 and f 1 reach the extrema of th
interval @x* 2a,x* 1a#. To this end we determinec6 such
that f 6(c6)5x* 6a. So we solve

H f 2~c2!5ht„ht
21~c2!2v…5x* 2a

f 1~c1!5ht„ht
21~c1!2v11…5x* 1a

⇒H ht
21~c2!2v5ht

21~x* 2a!5 i 2a

ht
21~c1!2v115ht

21~x* 1a!5 i 112a,

whenceht
21(c2)5ht

21(c1), and sinceh is monotonic, we
have thatc25c15c.

Therefore, the mapF giving the dynamics of the centra
site ~12! is given by

F~x!5H f 1~x! if x* 2a<x<c

f 2~x! if x* 1a>x.c.
~19!

From the above properties off 2 and f 1 , it follows that the
auxiliary mapF is a homeomorphism of the circle~see Fig.
8!.

A natural binary symbolic dynamics forF is introduced
by assigning the symbols 0 and 1 whenever the branchf 2 or
f 1 , respectively, is used in Eq.~15!. These symbols corre
spond to the central sitex( i ) remaining unchanged, or bein
replaced by the new sitex( i 11), respectively.

Every time a 1 is encountered, the front advances
roughly one site. So the density of 1’s in the sequence g
an approximation to the velocity, which becomes exact in
limit t→`. In terms of the circle map, the proportion of 1
in the sequence corresponds to its rotation numberr:
s
e

r~«!5v~«!5 lim
t→`

1

t (
i 51

t

si , ~20!

wheresi is the i th term in the symbolic sequence. We ha
stressed the« dependence ofr, since for a fixed local map
F depends on«, and so does its rotation number. Because
sitesx̄( j ) belong to the same front, the site interchanges
occur at the same time, and therefore the rotation numbe
any F i is the same as the one forF.

The representation of the motion of a front as a circle m
implies the likelihood of mode locking for rational velocitie
corresponding to Arnold tongues in parameter space, an
affords a simple explanation of the various dynamical p
nomena described in the previous sections.

The appearance of aq-period tongue as« is varied thor-
ough some critical value«* corresponds to a fold bifurcation
of Fq. Generically, a pair of period-q orbits is created at«
5«* . Thus the orbits ofF will undergo intermittency in the
region of the period-q orbit for «n close to«* . The inter-
mittency will manifest itself in the graph ofF as shown by
the darkly shaded areas of the orbit web in Fig. 9.

Moreover, the periodic orbit will form toward the cente
of the dark bands and the corresponding front shape
‘‘flatten’’ at the heights taken by the periodic points becau
of the time spent in their neighborhood by the orbits ofF for
«n'«* . It then follows that the approximating fronts wi
form steps for the periodic front with the periodic poin
close to their center points, and independently from the pa
metric path chosen to approach the boundary point~see Fig.
5!.

In Fig. 10 we plot the main mode-locking regions in p
rameter space~Arnold tongues!, corresponding tov5p/q
with small q. Here the local map is given byf (x)
5tanh(x/n), while the parameters vary within the unit squar
(«,n)P@0,1#2. We believe that mode locking is a commo
phenomenon in front propagation in CML’s, because

FIG. 9. Onset of intermittent regime in the auxiliary map, co
responding to the development of a steplike traveling front. For
parameter values and the front shape please refer to Fig. 4~c!. The
intermittency is the precursor of a pair of period-7 orbits.
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nonlinearity of the local map induces nonlinearity in the au
iliary map @9,10#, and mode locking is generic for suc
maps. However, this phenomenon often takes place on
small parametric scales, since the width of the tongues
creases sharply with increasingn ~Fig. 10!. This explains
why this phenomenon has not been widely reported~with the
notable exception of the largev50 region, corresponding to
the well-known propagation failure in the anticontinuu
limit @18#!.

In the continuum limit~see Fig. 10!, the stability of the
attractorsx6* becomes weaker, causing the front to broad
In Fig. 11 we plotted the auxiliary mapsF i corresponding to
n5100/101.1 for the one-way CML with local mapf (x)
5tanh(x/n). This figure should be compared with Fig. 6, co
responding to a narrower front. The domain of eachF i is

FIG. 10. Principal Arnold’s tongues of the traveling front velo
ity in the one-way CML with the hyperbolic tangent local ma
f (x)5tanh(x/n) in the («,n)P@0,1#2 parameter space. The righ
hand side scale gives the widths2 of the corresponding traveling
front for fixed «51/2.
J
.

t-
//
-

ry
e-

.

now smaller, since the intervalI 5@x2* ,x1* # has to be shared
between a larger number of sites. As a consequence,
nonlinearity of eachF is reduced~note that the auxiliary
maps in Fig. 11 are almost linear! and with it the size of the
tongues. Thus, the larger the widths2 of the traveling front,
the thinner the mode-locking tongue~see the right hand side
scale in Fig. 10!.
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FIG. 11. Auxiliary mapsF i(x) for the reduced dynamics of th
traveling front near the continuum limit. The CML was taken to
one way with local mapf (x)5tanh(x/n), n5100/101, and coupling
strength«50.45.
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